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Abstract:

Quantal response functions have wide applicability for predicting probabilities ol adverse outcome.

Recently, emphasis has arisen to extend their utilization to model in teratological and genotoxic phenomena. In this
application, however, outcomes within litter may be interdependent, so technigues that incorporate correlation structure
are recommended. We endorse the generalized estimating equation {GEE) methodology due to its flexibility in
accommodating multivariate responses. In this paper, GEEs are proposed from the Mahaianobis distance viewpoint.
Then, via a reasonable premise, we exiend the GEEs 1o include estimation of correlation information. Treatment of
inverse prediction inference as it relates to dosage is also considered. The resulting framework is ilfustrated using
published data from a study on radiation-induced defects.

1. Introduction

Toxicity studies using rodent models are often used to
provide data to governmental agencies vested with
informing and protecting the public with regard to
potentially dangerous substances. End products of
these data may inciude synthesized risk assessment
models which measure the probability of adverse effect
{quantal response} as a function of exposure level. A
recent addition o areas exhibiting such interest
involves that of developmental toxicity. A primary aim
of this particular application seeks determination of the
exposure fevel above background rates that affects a
real increase in the risk of adverse teratological or
fetatoxic events. These experiments typically involve
control and exposure groups, each involving a
muitiplicity of pregnant dams at similar points in their
gestational phase.  Just prior to term the dams are
sacrificed and their uferine contents enumerated with
adverse effects noted.

A difference between developmental toxicity and other
risk assessment programs (e.g. cancer) is that outcomes
may tend to be correlated within the litter. Several
approaches to account for this possibility have been
forwarded, The Polya-Eggenberger distribution was
used by Williams {1975) and Chen and Kodel {198%)
for modeling the beta-binomial log-likelihood function.
Ryann (1992a), noting that outcomes could be
categorized other than dichotomously, considerad the
probiem as i applies to modeling multinomial
responses.
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More receatly, Ryan (1992b) capitalized on the
multivariate nature of the generalized estimating
equations {GEEs) (Liang and Zeger 1986; Zeger and
Liang 1986), which is a quasi-likelihood (QL)
{Wedderburn 1974) technique. An advantage of using
(GEEs is that the estimated parameters are consistent
regardiess of the true, but unknown correlation
structure. Testing procedures based on binary dataare
summarized by Fungetat.(1994). Goodness-of-{it tests
for GEE modeling with binary responses are discussed
by authors including Hosmer and Lemeshow(1997),
Barnhart and Williamson{ 1998).

A simple algorithm for generating binary data is given
by Park, Park and Shin(1996). The GEEs provide a
flexible mechanism for modeling multivariate
outcomes. However, as noted by Ryan (1992b), most
of the available computer software implicitly assumes
linearity of the parameiers within a chosen predictor.
To overcome this deficiency, we implement the
nonlinear predictor suggested by Chen and Kodeli
{1989} and Ryan (1992b} into the GEE methodology.

The GEEs provide a flexible mechanism for modeling
muitivariate outcomes. However, as noted by Ryan
(1992b), most of the available computer software
implicitly assumes linearity of the parameters withina
chosen predictor.To overcome this deficiency, we
implement the nonlinear predictor suggested by Chen
and Kodell (1989} and Ryan (1992b) inte the GEE
methodology. The paper begins by [first proposing
GEEs using the weighted least-squares method as
applied to the Mahalanobis distance point of view.
This is followed by expansion of the resulting



framework include estimation of comrelation
components.  Inverse prediction and its inferential
consequences are briefly explored. Ilustration of these
results is provided with an example on radiation-
induced teratological defects.
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2. Generalized Estimating Equations

The development parallels that of Liang and Zeger
(1986) in the original formutation of the GEFs. First,
it 18 postulated that individual responses possess
marginal distributions from the exponentiaf family:

P(Y=y) = f,(y:A.&) = expld{yA - al)} + b(y.d) 1 (1)

from which the well-known resuft is obtained

{McCuilagh and Nelder 1983);

u,=a’(A)
ot = a’ (AVd

(2)
(3)

where A and ¢ are the canonical and scale parameters,
respectively. The typical approach is to maximize the
likelihood (or equivaiently its logarithm). In the event
thit the scale parameter is unknown, this maximum
likelihood (ML) technique reverts to quasi- ]:Rel;hood
{(QL) estimation (Wedderburn 1974).

The canonical parameter, A, is often equated to a
prediceor m, a function of covariate information. This
is accomplished, owing to its ensuing simplicity, is
provided by generalized linear models (Nelder and
Wedderburn 1972) in which 1 = X" E, where X is a
vector of concomitant information and £ is a vector of
structural parameters. However, this need not be the
case. Noniinearity is introduced by setting 1 to (¢ +
Bd*), where d represents the dose or exposure level of
the substance under investigation and («, B, it (=E)
is the specific structural parameter vector that is to be
estimated. This predictor has been advocated by Chen
and Kodell (1989) and Ryan (1992b) for teratological
research. It must be emphasized that expectations
(Equation 3) are modeied explicitly regardless of the
form of the predictor,

The scale parameter, ¢, as alluded to earlier, may or
may not be known. In the event that the latier is true,
it must be estimated. We shall establish in the
subsequent development a rationale and means by
which to accomplish this. Fortunately, its presence or
ahsence does not affect the modeling process.
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A covariance matrix } may be decomposed into $"* R
S, where Sis a diagonal matrix of variance elements
and R is the correlation matrix. By postulate, variance
elements are of the form exhibited by Equation 4.
Hence, because ¢ is assumed fixed for a given
application (whether known or not), it also may be
factored out: 3 =A™ RA"p ="V, where
elements of diagonal matrix A are of the form a” (A).
Therefore, the Mahalanobis distance may be expressed
as:

,LA)” (,\_ 1))

Z@Q

the product of a fixed scalar and a quadratic form
functional in £ through the expectation vectors.

Having written the Mahatanobis distance in this form,
we observe that quadratic form  is free of the scale
parameter. Using the teast squares approach, we equate
the partial derivative of D’ to zero. Thus, we need only
to differentiate Q because ¢ has been exercised from
the problem through division,

Note that technically the process of differentiation and
setting to zero is not an extreme location exercise in
this setting. This is because we model the expectation
vectors as having exclusive functional relationships
with £ In general, elements of V' share in this
property also; but we, following the QL methodology,
choose instead to use these matrices as weighting
factors which vary through a direct mean-variance
association (e.g. Equations 2 and 3}, For this reason
the current derivation is analogous to weighted least
squares, Interested readers may survey alternative
estimators based on minimization of the quadratic form
(Bass, Singh and Hardin 1998). After taking
derivatives and algebric simplifications the following
gxpression was resulted:
EE D Vil (Y, = 0= g@) 4
where g, is the n, x | expectation vector and V is the
;X 1y matrix proport10na§ ta the covariance of Y with
D, (= 8gu/a§T) being the n, X 3 (in our setting) par[ml
derivative matrix. Equat:on 6, constitutes the GEEs
{also known as gradient equations) and upon solution
yields the estimate fof £, We next examine these
components in detail.



The expectation vector y; consisis of elements (k=
t to n,), which are often modeled marginally by the
logistic response function, the canonical choice given
independent Bernoulll responses.  That function is
sigmoidal in shape, as are many continucus cumulative
distribution tunctons. Others, such as the standard
normal, Weibull, and extreme value distribution
functions, could very well be used in a similar manner.
Given this spectrum of possibilities, let us postulate
that g, be modeled by F(A}, where F(A,) is a
continuously differentinble cumulative distribution
function.

Upon equating canonical parameter A, to predictor n,,
we typify the quantal response modeling approach: i,
= FiA{dn = F( o + d" ). This last formula is often
denoted the risk function, as it expresses the probability
of adverse outcome functionally with dosage.

The matrix V,, was seen earlier o be factorable into
Ava R, Al where A is composed of diagonal
slements of the form a”(4,,), and R, is a correlation
matrix. Because dichotomous responses are observed,
aconvenient choice for representing elements of Ay is
uijk(l - u,), the Bernouili variance function under
conditions of independence. Our next decisions are not
as theoretically based, but remain tenable. First, we
postulate that the correlation matrix is constant across
all indices: R, = R. Then, cognizant of the fact that
cluster members originate under nearly identical
conditions, we hypothesize that an exchangeable
correlation structure is reasonable.  Given these
propositions, oaly the single additional parameter,
correlation  coefficient, p, becomes involved to
angment £ and ¢ for estimation. The partial derivative
matrix Dy attaing a particularly simple form. Upon
equating marginal means to cumulative distribution
functions, derived DJKi (Bass, Singh and Hardin 1998).

Next, we briefly describe the technique by which
the covarance of £ and is fundamental to the estimation
process:

HE=-LY D7 Vv, Dij {5)

GEEs are solvad to yield estimates for £, p and ¢.
The Hessian, dg(E)/IE is related to the asympiotic

It can be shown by Taylor sefies expansion
(McCullagh and Nelder 1983) that (& ~§)=-H"g
in which case asymptotically ( Bass, Singh and Hardin
1998):
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Var{ )= Var{- H'g) = (-H") Var{g} (-H' {6}

In the event that the true covariance Var{y,] is
specified correctly by Y, , the above expression
simmplifies to (Bass, Siagh, Hardin [998):

Var(E) = -(¢. H)

Eguation 6 is referred fo as the naive estimated
covariance matrix, The details for cormnputingits robust
analogue are given in Liang and Zeger (1986).

Estimation of the exchangeable correlation coetficient
p (jointly with £) requires augmentation onto the
gradient {Equation 4} and Hessian (Equation 3)
quantities described earlier. Components of the joint
iterative system are displayed in matrix augmentation
in Bass (1993) and Bass, Singh and Hardin (1998),

3. Inference On Dosage - The Inverse Problem

The ED,, is the dosage level that effects a one-percent
increase - in adverse response -over the observed
background rate. Given the quantal response model the
ED,, is given as follows:

ED, = { F'FO0) +0.01]/B}"

Another, but more conservative guantity, is the
benchmark dose (BD) (Crump 1984). This is defined
as the lower 95% confidence limit (CL) on the ED,,.
Because dose has been the independent variable
throughout the previcus development, we must now
pursae a strategy for inverting the inference.

Several approaches have been suggested for computing
the BD. A likelihood-based method was suggested by
Chen and Kodell (1989). A benefit of this technique is
that it yields attainable (i.e. positive) values. But, as
noted by Ryan (1992b), adaptation of this procedure
for GEEs has not yet been accomplished. Until newer
techniques evelve, we follow Gart et al. (1986) and
Ryan (1992a, 1992b) in using the asymptotically
muftivariate normal distribution of the prediciors to
base variance estimates. for CL  construction.
Extrapolation to the BD is direct, but {caveat) negative
values loom possible. Two suppositions for the



situations where v is known or unknown are given in
Bass, Singh and Hardin {1998).

34,y known

This assumpticn allows the predictor to be considered
essentiatly linear. We begin by recalling the definition
of the risk function: g =F(u + Bd"), where ideally all
parameters are known, Upon assuming this function is
one-to-one {as is the case for contingous monotonic
Thaus, F'{u}

increasing functions), it is invertible.

equals (a -+ Bd7),
Solving for d" implies:
Flw - a
p

In reality, g is only estimated through modeling.
Hence:

d" =

47 = F_l(!})‘a.
p
Therefore,

var{d'}

=B d7]
var{[&, B}

In practice, point estimates are inserted for parameters.
The BD is approximated by

[1,d"" (7)

[(ED, ) - 1.6458]"

where < is the square root of Equation 10 evaluated at
(d=ED,}.

3.2, vy unknown

Unlike above, this assumplion requires the predictor to
remain nenlinear. Using the derwat;on above, we may
now write by var{dT}=p Fvar{(& +BdN)].
However, the vector factorization does not directly
follow. Therefore, consider a Taylor series expansion
of around the true parameter vector £. Upon a first-
order approximation:

= B [1.d",Bd log(d))]
var G,B,y] 1,a,’Y,ﬁd“"log{d\,}j?w

var{ a”’
(%)

Ag before, the BD is computed by
[(ED,, ) - 1.6458]""
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where < is the square root of Equation § evaluated at
{d=ED,,). But due to the inclusion of variance and

covariance information from 7Y, this BD will most

likely differ from that previously derived.

4. Radiation Exposure

Using the derived GEE framework we present tables
for the following example. Flexibility is illustrated
through fitting the data with logistic [F(h)y = {1 +
exp(-A3}], standard normal [F(A) = @(R)], Weibuil
[FQ) =1 -exp(-L)], and extreme value [F(A)= | - exp{-
exp(A}] distribution functions to model quantal
responses. Rai and Van Ryzin (1985) examined the
effect on fetuses sired by male CBA mice irradiated
within a week before maiing. The data set was
originally analyzed in Lining et al. (1966). In this
experiment, a control group was utilized along with
exposure groups receiving 300 and 600 rads (R). Total
impregnations involved 683, 604, and 486 dams,
respectively, with a total of 11773 implants conceived.

Following Rai and Van Ryzin (1985), dose levels were
rescaled by a factor of 107 prior to modeting. To
reduce selection bias, unlike the antecedent reports, afl
data js incorporated into the current analysis. Table I
furnishes parameter estimates across the modeling
distributions.

All structural  parameter  values are  extremely
significant (p < .0001), and, surprisingly, correlation
coefficient and scale estimates agree to the third
decimal place. The low values accorded p are
especiaily of acknowledgment, in that they support the
position of Liining et al. (1966} by denoting an absence
of perceived intralitter correlations.

Table II validates the close agreement hetween
observed and predicted proportions incurring events.
Nonetheless, divergence is observed at leveis around
650R. This iflustrates that further research is necessary
to establish mode] selection policies when dose-
response extmpalatmn bLy(md ranges provided by the
data is desired.

Similarly, but not nearly as obvious, low-dose
extrapaolation has problems needing resolution. The
Weibull fit differs contrastingly in that it has the least
stope. A direct consequence is revealed in Table II,
wherein the Weibull ED,, and BDs are seen to be



several times larger than the others, and hence, are
suggestive of more liberal levels of dosing.

On the other hand, Weibull modeling produces lower
(ED, ) variance estimates, thus providing inferential
appeal. These various points highlight the necessity of
creating definitive, theoretically based guidelines for
teratological analysis methodoefogies.

3. Discussion

The ftexibility of the GEE approach in teratological
applications has been illustrated with both theoretical
considerations and a demonstrative example. Perhaps
the most beneficial attribute afforded by this technique
is the relaxation of specific distributional assumptions,
an especially welcome virtue in view of the sparsity of
muitivariate distributions in general, The hallmark of
this approach, capitalizing on QL, while remaining
vague towards a correlation structure, embodied by the
consistency of the GEE estimator (Liang and Zeger,
1986).

As noted eariier, a valid mean-variance relationship is
imperative, However, modeling of the mean itself is,
for the most part, left to choice. The remaining
quantity, a postulated form of the correlation, follows
intuitively from the nature of the data in this setting.
Although this assumption was made partly for its
simplicity -and- ease of implementation; a more” vaiid
approach may be (o utilize separate exchangeable
correlation structures, paralleling Chen and Kodell
(1989), for each dosage level.

A persistent problem, shared with other modeling
approiches, concerns inverse prediction inference as it
applies o low-dose extrapolation. As we observed via
example, individual models may agree closely in other
respects yet yield BDs of sizable relative difference.
Furthermore, suppositions on which tc base variance
estimators and CLs often are not well-founded on
theory and are therefore open to criticism -- particularly
disturbing are the conspicuous usages of power
transformations. We agree with Ryan (1992b) that a
tikelihood-based approach seams more appropriate, and
it remains a current topic for investigation.
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Table 1. Estimates of parameters

Quantal Structural (naive std error) Nuisance
pesponse T

mode! o p Y P b
Probit -1.283(.026) 1.489(.074) 0.732(.066) 0.011 £.001
Logistic -2.200(.030) 2.528(. 120} 0.679(.063) 0.011 1.0
Weibull 0. 1030.005) 0711(.054) FER2(.094) 0611 REHH
Extreme -2.234(.048) 2.178.096) (1.627(.059) 0.011 1.001

Dosage (R)
G 300 600
OBSERVED 479/4809 1004/3975 L191/2091
= {19961 = 25258 = .39819
PREDICTED
Probit 09974 (25285 39827
Logistic 09978 25287 39829
Weibull 09986 25289 39830
Extreme {09963 25286 39828

Table IIL. ED,, and BD estimates (R x 10°)

Quantal (1) A known (2} A unknown
response ED,, . —
model 9 BD G BD
Probit - - 009432 019244 001223 OL7i94 001840
fogistic 011038 016812 001682 015369 002292
Weibull .02§894 007057 007155 0067187 006821
Extreme 007481 021232 D008ES 018741 001322
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